The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis.
نویسندگان
چکیده
The specification of the hair and non-hair cells in the Arabidopsis root epidermis provides a useful model for the study of cell fate determination in plants. A network of putative transcriptional regulators, including the related bHLH proteins GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), is known to influence the patterning of these cell types. Here, we analyze the expression and regulation of GL3 and EGL3 during root epidermis development. Although they are thought to act in both the hair and non-hair cell types, we surprisingly found that GL3 and EGL3 gene expression and RNA accumulation occurs preferentially in the developing hair cells. By analyzing the expression of GL3::GUS and EGL3::GUS reporter fusions in various mutant and overexpression lines, we discovered that the expression of both genes is negatively regulated by WER, GL3 and EGL3 in the developing non-hair cells, and positively regulated by the CPC and TRY proteins in the developing hair cells. Further, the analysis of a GL3-YFP translational fusion, expressed under the GL3 promoter, indicates that the GL3 protein moves from the hair cells to the non-hair cells. These results suggest that GL3/EGL3 accumulation in the N cells is dependent on specification of the hair cell fate, which itself is known to be influenced (via CPC-mediated lateral inhibition) by the non-hair cells. This bi-directional signaling mechanism defines a new regulatory circuit of intercellular communication to specify the epidermal cell types.
منابع مشابه
The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root.
The position-dependent specification of the hair and non-hair cell types in the Arabidopsis root epidermis provides a simple model for the study of cell fate determination in plants. Several putative transcriptional regulators are known to influence this cell fate decision. Indirect evidence from studies with the maize R gene has been used to suggest that a bHLH transcription factor also partic...
متن کاملHistone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis.
The Arabidopsis root has a unique cellular pattern in its single-layered epidermis. Cells residing over the intercellular spaces between underlying cortical cells (H position) differentiate into hair cells, whereas those directly over cortical cells (N position) differentiate into non-hair cells. Recent studies have revealed that this cellular pattern is determined by interactions of six patter...
متن کاملBrassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases
In Arabidopsis, root hair and non-hair cell fates are determined by a MYB-bHLH-WD40 transcription factor complex and are regulated by many internal and environmental cues. Brassinosteroids play important roles in regulating root hair specification by unknown mechanisms. Here, we systematically examined root hair phenotypes in brassinosteroid-related mutants, and found that brassinosteroid signa...
متن کاملA network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis.
GLABRA3 (GL3) encodes a bHLH protein that interacts with the WD repeat protein, TTG1. GL3 overexpression suppresses the trichome defect of the pleiotropic ttg1 mutations. However, single gl3 mutations only affect the trichome pathway with a modest trichome number reduction. A novel unlinked bHLH-encoding locus is described here, ENHANCER OF GLABRA3 (EGL3). When mutated, egl3 gives totally glabr...
متن کاملRegulation of cell fate determination in plants
Building a multicellular organism, like a plant, from a single cell requires the coordinated formation of different cell types in a spatiotemporal arrangement. How different cell types arise in appropriate places and at appropriate times is one of the most intensively investigated questions in modern plant biology. Using models such as trichome formation, root hair formation, and stomatal devel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 132 2 شماره
صفحات -
تاریخ انتشار 2005